CERTIFICATE OF ANALYSIS

International Temperature Scale of 1990

Aluminum Freezing-Point Cell

Pond Engineering Model K23C
Serial Number Al 98357

Tested for
Instituto Nacional de Tecnica Aerospacial
Madrid, Spain

6 December 1999

Instituto Nacional de Tecnica Aerospacial
Attn.: Dr. Robert Benyon
Temperature and Humidity Laboratory
CTRA Ajalvir
22850 Torrejón de Ardoz
Madrid, Spain

Subject: Quality evaluation of Al FP cell ($\mathrm{s} / \mathrm{n} \mathrm{Al} \mathrm{98357)}$
Purchase Order No.: 7230-127/1.998
Test No.: 836/261097-99

Dear Dr. Benyon:
A direct comparison of your aluminum freezing-point cell (Pond Engineering Model K23C, s / n Al 98357) was made against our laboratory standard aluminum freezing-point cell (Al 94-2). The measurement system included an ASL Model F18 operating at a frequency of 30 Hz with a 100Ω Tinsley Model 5685 reference resistor, temperature controlled to within $\pm 8 \mathrm{mK}$, and a 25.5Ω SPRT. The depth from the mid-point of the SPRT sensor to the liquid surface of your fixed-point cell is stated to be 16.5 cm ; the depth of our cell is 18 cm . The pressure in your fixed-point cell and our cell was set to 101.3 kPa . Corrections were made to account for the difference in immersion depth. As shown in figure 1, the freezing-point temperature of your cell is 0.42 mK lower than that of the NIST reference cell Al 94-2 cell. We assign an expanded uncertainty ($k=2$) of 0.64 mK on the realized value of our cell to account for impurities and measurement errors.

Figures 2 and 3 give an example of a freezing and melting curve for your cell, respectively. Figure 4 gives an example of the immersion characteristics of a Chino R800-2 SPRT in your cell relative to the ITS-90 assigned hydrostatic-head effect for aluminum. A thermometer must track the hydrostatic-head effect over the bottommost 3 cm of the reentrant well to exhibit proper immersion in a fixed-point cell.

Sincerely,

Dr. B. W. Mangum
Leader, Thermometry Group
Process Measurements Division

Figure 1: Direct comparison of the INTA Al cell ($\mathrm{s} / \mathrm{n} \mathrm{Al} \mathrm{98357}$) with the NIST reference Al cell (Al 94-2), ASL F18, $30 \mathrm{~Hz}, 0 \mathrm{~mA}$

- NIST Al 94-2, set \#1
O INTA Al 98357, set \#1, -0.38 mK
- NIST Al 94-2, set \#2
\diamond INTA Al 98357, set \#2, -0.45 mK

Figure 2: Freezing curve of the INTA Al fixed-point cell ($\mathrm{s} / \mathrm{n} \mathrm{Al} 98357$) ASL F18, $30 \mathrm{~Hz}, 1 \mathrm{~mA}$

Figure 3: Melting curve of the INTA Al fixed-point cell ($\mathbf{s} / \mathbf{n ~ A l ~ 9 8 3 5 7) ~}$ ASL F18, $30 \mathrm{~Hz}, 1 \mathrm{~mA}$

Figure 4: Immersion profile of the INTA Al fixed-point cell (s/n Al 98357) during a freezing-point realization using SPRT 0033 (Chino R800-2)

ASL F18, $30 \mathrm{~Hz}, 0 \mathrm{~mA}$

